Neues in der Schmerztherapie

Univ. Prof. Dr. Rudolf Likar
Vorstand der Abteilung für Anästhesiologie und Intensivmedizin
Klinikum Klagenfurt am Wörthersee
Interdisziplinäre Schmerzklinik und Palliativmedizin
• Durchbruchschmerz – Tumorschmerz

• neuropathischer Schmerz

• Cannabinoide

• Vitamine
Percentage of patients reporting pain in cancer by country

- **Global (n=5084)**: 56%
- **UK (n=617)**: 58%
- **Switzerland (n=267)**: 73%
- **Sweden (n=1051)**: 20%
- **Romania (n=327)**: 61%
- **Norway (n=302)**: 66%
- **Italy (n=457)**: 88%
- **Israel (n=287)**: 71%
- **Ireland (n=96)**: 52%
- **France (n=642)**: 62%
- **Finland (n=383)**: 52%
- **Denmark (n=373)**: 54%
- **Czech Republic (n=282)**: 71%

European Pain in Cancer Survey, European Association of Palliative Care. Half of European cancer patients have moderate to severe pain: one in five patients does not receive treatment. J Pain Palliat Care Pharmacother. 2007; 21(4):51-3
Level of pain per country

Global mean score: 6.38

<table>
<thead>
<tr>
<th>Country</th>
<th>Mean Level of pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK</td>
<td>6.36</td>
</tr>
<tr>
<td>Swiss</td>
<td>6.5</td>
</tr>
<tr>
<td>Sweden</td>
<td>5.59</td>
</tr>
<tr>
<td>Romania</td>
<td>6.67</td>
</tr>
<tr>
<td>Norway</td>
<td>5.82</td>
</tr>
<tr>
<td>Italy</td>
<td>6.27</td>
</tr>
<tr>
<td>Israel</td>
<td>6.96</td>
</tr>
<tr>
<td>Ireland</td>
<td>6.1</td>
</tr>
<tr>
<td>France</td>
<td>6.72</td>
</tr>
<tr>
<td>Finland</td>
<td>6.52</td>
</tr>
<tr>
<td>Denmark</td>
<td>6.94</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>6.11</td>
</tr>
</tbody>
</table>

Base: all who currently experience pain once a month (n=3066) S8. Thinking about the last time you experienced pain, please give me a number from 0 to 10 indicating the intensity of your pain where a “0” means “no pain at all” and a “10” means “the worst pain imaginable”. ?

- **Sweden and Norway** are the countries with the lowest level of pain.

- **Israel** is the country where the intensity of pain is the highest with 63% of respondents within the 7-10 range.

European Pain in Cancer Survey, European Association of Palliative Care. Half of European cancer patients have moderate to severe pain: one in five patients does not receive treatment. J pain Palliat Care Pharmacother. 2007; 21(4):51-3
63% of patients using prescription analgesia report that they are affected by breakthrough pain

More than half of patients taking prescription medication suffer from breakthrough pain at least once a week

Characteristics of BTCP

BTCP is a heterogeneous pain symptom. The two widely identified and accepted categories of BTCP are spontaneous pain and incident pain:

- Spontaneous pain ("idiopathic pain") – these episodes are not related to an identifiable precipitant and so, are unpredictable in nature.
- Incident pain ("precipitated pain") – these episodes are related to an identifiable precipitant, and can be generally predictable in nature. Incident pain is usually sub-classified into one of three categories.
 - Volitional incident pain – brought on by a voluntary act (e.g., walking)
 - Non-volitional incident pain – brought on by an involuntary act (e.g., coughing)
 - Procedural pain – related to a therapeutic intervention (e.g., wound dressing)

ZISOP - Zentrum für interdisziplinäre Schmerztherapie, Onkologie und Palliativmedizin, Center of excellence

Summary of Product Characteristics for Abstral®, Actiq®, Effentora®, Instanyl®, and PecFent

Characteristics of Subjects

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Patients (n = 1000)</th>
<th>Patients With Incident Pain (n = 440)</th>
<th>Patients With Spontaneous Pain (n = 415)</th>
<th>Patients With Mixed Pain (n = 143)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOG performance status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECOG 0</td>
<td>38</td>
<td>15</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>ECOG 1</td>
<td>231</td>
<td>99</td>
<td>99</td>
<td>41</td>
</tr>
<tr>
<td>ECOG 2</td>
<td>325</td>
<td>141</td>
<td>138</td>
<td>46</td>
</tr>
<tr>
<td>ECOG 3</td>
<td>330</td>
<td>154</td>
<td>128</td>
<td>47</td>
</tr>
<tr>
<td>ECOG 4</td>
<td>75</td>
<td>39</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>Not stated</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Cancer diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast</td>
<td>125</td>
<td>66</td>
<td>43</td>
<td>16</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>264</td>
<td>107</td>
<td>106</td>
<td>50</td>
</tr>
<tr>
<td>Gynecological</td>
<td>72</td>
<td>30</td>
<td>35</td>
<td>7</td>
</tr>
<tr>
<td>Hematological</td>
<td>35</td>
<td>14</td>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>Head and neck</td>
<td>65</td>
<td>28</td>
<td>28</td>
<td>9</td>
</tr>
<tr>
<td>Lung</td>
<td>172</td>
<td>72</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>Melanoma</td>
<td>25</td>
<td>13</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Neurological</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>34</td>
<td>14</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>Urological</td>
<td>160</td>
<td>78</td>
<td>61</td>
<td>21</td>
</tr>
<tr>
<td>Unknown</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Not stated</td>
<td>24</td>
<td>10</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Background analgesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioid for moderate-to-severe pain</td>
<td>993</td>
<td>435</td>
<td>415</td>
<td>141</td>
</tr>
<tr>
<td>Opioid for mild-to-moderate pain</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Opioid not stated</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nonopioid^a</td>
<td>571</td>
<td>262</td>
<td>216</td>
<td>91</td>
</tr>
<tr>
<td>Adjunctive analgesic</td>
<td>383</td>
<td>173</td>
<td>154</td>
<td>56</td>
</tr>
<tr>
<td>Breakthrough analgesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opioid for moderate-to-severe pain</td>
<td>948</td>
<td>415</td>
<td>395</td>
<td>138</td>
</tr>
<tr>
<td>Opioid for mild-to-moderate pain</td>
<td>26</td>
<td>14</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Opioid not stated</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>No opioid</td>
<td>20</td>
<td>7</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>Nonopioid^a</td>
<td>289</td>
<td>116</td>
<td>131</td>
<td>42</td>
</tr>
<tr>
<td>Adjunctive analgesic</td>
<td>42</td>
<td>15</td>
<td>22</td>
<td>5</td>
</tr>
</tbody>
</table>

ECOG = Eastern Cooperative Oncology Group.
^aIncludes two patients with indeterminate type of breakthrough pain.
^bNonopioid = paracetamol (acetaminophen) and nonsteroidal anti-inflammatory drugs.

Duration of untreated episodes. BTcP = breakthrough cancer pain.
Box and whisker plot showing lower quartile, median, upper quartile, and range of values for interference with various aspects of daily living.

Prevalence of pain within each cancer diagnosis (n = 1549)

Ergebnisse

- 53% hatten Tumorschmerzen (bezgl. der Grunderkrankung oder Behandlung)
- 25,3% hatten Nicht-Tumorschmerzen
- 21,7% hatten Tumor- und Nicht-Tumorschmerzen
- 73% der Patienten hatten Schmerzen in mehr als einer Lokalisation, im Mittel 4, Range zwischen 0 – 14
- Patienten mit Tumor- und Nicht-Tumorschmerzen hatten eine größere Anzahl an Schmerzlokalisationen als die Tumorschmerz – Gruppe.
- Patienten mit Tumorschmerzen hatten eine höhere Verschreibung von Opiaten als Patienten mit Nicht-Tumorschmerz
- Patienten mit Tumor/Nicht-Tumorschmerz gemischt hatten höhere Schmerzstärken als Patienten mit Tumor- oder Nicht-Tumorschmerz allein.

Schmerzpräparate ohne Erstattung in A

<table>
<thead>
<tr>
<th>Präparat</th>
<th>Zulassungsinhaber</th>
<th>Zulassung</th>
<th>EKO-Box</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actiq</td>
<td>Cephalon</td>
<td>2002</td>
<td>NO-Box</td>
<td></td>
</tr>
<tr>
<td>Zaldiar</td>
<td>Grüntenthal</td>
<td>2008</td>
<td>NO-Box</td>
<td></td>
</tr>
<tr>
<td>Tapentadol</td>
<td>Grünenthal</td>
<td>2012</td>
<td>NO-Box</td>
<td></td>
</tr>
<tr>
<td>Jurnista</td>
<td>Janssen Cilag</td>
<td>2008</td>
<td>NO-Box</td>
<td>Streichung aus “Rot” am 1.05 2008</td>
</tr>
<tr>
<td>Targin</td>
<td>Mundipharma</td>
<td>2009</td>
<td>NO-Box</td>
<td>Innovatives Kombipräparat mit generischem Monopraparat verglichen</td>
</tr>
<tr>
<td>Instanyl</td>
<td>Nycomed</td>
<td>2009</td>
<td>NO-Box</td>
<td></td>
</tr>
<tr>
<td>Effentora</td>
<td>Cephalon</td>
<td>2008</td>
<td>Rote Box</td>
<td></td>
</tr>
<tr>
<td>Versatis</td>
<td>Grünenthal</td>
<td>2010</td>
<td>No-Box</td>
<td></td>
</tr>
</tbody>
</table>

Quelle: Warenverzeichnis Jän 2011; Verlautbarungen zu Änderungen im EKO (avsv.at)
No-Box ≠ No-Therapie?!

- **Das österreichischen Boxen System:**
 Die Grüne Box, Gelbe Box und rote Box sind Teil vom Erstattungskodex >> nach bestimmten Regeln kann hier ein Arzneimittel verordnet werden

- **Die No-Box**
 ...bedeutet, dass es eine Vielzahl innovativer Arzneimittel nicht Teil des Erstattungskodex sind und „KEINER BOX“ (No-Box) aus dem Erstattungskodex zugeordnet sind >> chefärztliche Bewilligungsanfrage zu stellen ist
No-Box Verordnung: Beispiel Palexia

Voraussetzungen für eine erfolgreiche Palexia
chefärztliche Bewilligungsanfrage

1. Patienten mit starken chronischen Schmerzen muss bereits vortherapiert sein
2. Patient muss bereits in weitere Folge mit einem starken Opioid „an-therapiert“ worden sein
3. Begründung warum eine Palexia Therapie aus medizinischen Ermessen notwendig erscheint
• Durchbruchschmerz – Tumorschmerz

• neuropathischer Schmerz

• Cannabinoide

• Vitamine
Epidemiology and Impact of Neuropathic pain

Neuropathic pain – “pain arising as a direct consequence of a lesion or disease affecting the somatosensory system” according to the NeuPSIG (Special Interest Group on Neuropathic pain) definition – is a challenge to health care.

This common type of pain is often underdiagnosed and undertreated, and it is associated with suffering, disability, impaired quality of life and increased cost.

Haanpää M, Treede RD. Diagnosis and classification of Neuropathic Pain. PAIN – Clinical updates 2010; 18(7):1-6
Behandlungsalgorithmus

peripherer neuropathischer Schmerz

postherpetische Neuralgie und fokale Neuropathie

ja

Lidocain Pflaster

nein

ja

TCA: Trizyklische Antidepressiva

SNRI: Serotonin-Noradrenalin-Wiederaufnahmehemmer

Gabapentin / Pregabalin

TCA Kontraindikation

nein

TCA (SNRI)

ja

nein

TCA Kontraindikation

ja

nein

TCA (SNRI)

Gabapentin / Pregabalin

Tramadol, Oxycontin

N, B. Finnerup et al; Pain 118 (2005) 289-305
Lidoderm, Versatis® Pflaster (5% Lidocain)

- Lidoderm® ist seit 1999 in den U.S.A. für die Therapie der Postzoster-Neuralgie (PZN) zugelassen
- Das 10x14 cm große Pflaster enthält 700 mg Lidocain
- Resorption von 3±2% der Lidocain-Rate
- Anwendung max. 12 Stunden am Tag
20 Pat. mit lokalisiert neuropathischem Schmerz (postoperativ neuropathischer Schmerz n = 14, CRPS Typ I n = 2, postherpetisch Neuralgie n = 4) wurden erfolgreich mit 5%igem Lidocain Pflaster behandelt. Nach 3 Jahren waren 10 von 20 (50 %) initiale Responder, welche das Pflaster weiter verwendeten. **Nach 5 Jahren verwendeten 8 von den initialen 20 Respondern (40 %) Lidocain Pflaster.** Von 12 Responder beendeten Therapie, weil sie nicht länger erforderlich war bei n = 4. 2 Pat. wegen Verschreibungsprobleme und 1 Pat. konnte nicht mehr nachverfolgt werden, und 5 starben aufgrund ihrer Grunderkrankung. Reversibles Erythem wurde bei 2 Pat. beobachtet, weil sie das Pflaster länger als 16 Stunden trugen. Keine systemische Nebenwirkungen wurden gesehen. 5%iges Lidocain Pflaster ist auch in der Langzeitbehandlung effektiv und gut toleriert.

Europäische Erfahrung: Lidocain Pflaster für neuropathische Schmerzen

- **PHN**
- **Post-traumatische Syndrome:**
 - nach Frakturen
 - nach orthopädischen Operationen
- **Postoperative Syndrome**
 - Hernienoperationen
 - neurochirurgische Eingriffe
 - Throaxeingriffe
- **Metabolische Neuropathien wie diabetische Neuropathie**
- **Toxische Neuropathien**
 - durch Chemotherapie induzierte Neuropathien
 - Alkohol - induzierte Neuropathien
 - Interferontherapie

Low back pain und Osteoarthritis
• 52% responder (*pain reduction >30%*)
Mechanical hyperalgesia and dynamic allodynia predict outcome

- **Mechanical pain threshold**
 - 188 (SD 183) mN in responders
 - 323 (SD 201) mN in non-responders
 → Hypoalgesia is a negative predictor

- **Dynamic allodynia**
 - 8 (SD 9) in responders
 - 2 (SD 4) in non-responders
 → absence of allosthesia is a negative predictor
Pain diagnoses and pain location. Two patients discontinued after 4, and one patient after 5 treatment months

<table>
<thead>
<tr>
<th>Pain diagnosis</th>
<th>n</th>
<th>Pain location</th>
<th>Overall pain intensity (NRS 0-10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline</td>
</tr>
<tr>
<td>Dorsalgia</td>
<td>17</td>
<td>Lumbar region</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left popliteal fossa</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left hip and leg</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left lower leg</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lumbar and cervical region</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lumbar and thoracic region</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lumbar region and forehead</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cervical, thoracic, lumbar region</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cervical region*</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cervical and thoracic region</td>
<td>8</td>
</tr>
<tr>
<td>Postoperative/posttraumatic pain</td>
<td>3</td>
<td>Left mandible</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left hip*</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right ankle</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left hand</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Right wrist</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Left groin</td>
<td>10</td>
</tr>
<tr>
<td>Phantom limb pain</td>
<td>1</td>
<td>Thoracic, left side</td>
<td>9</td>
</tr>
<tr>
<td>Postherpetic neuralgia</td>
<td>1</td>
<td>Stump left leg</td>
<td>10</td>
</tr>
<tr>
<td>Not specified</td>
<td>1</td>
<td>Left wrist</td>
<td>8</td>
</tr>
</tbody>
</table>

Notes: This patient experienced neuropathic pain in the cervical region and following hip surgery.

Abbreviation: NRS, numerical rating scale.

Zurück zur Peripherie
Der Capsaicin-Rezeptor: TRPV1

- **TRPV1** = transzienter Rezeptor-Potentzialkanal vom Vanilloid-Rezeptortyp, Subtyp 1

- Sie finden sich an zahlreichen Stellen im Körper, vor allem auf Nozizeptoren in C- und Aδ-Fasern

- Wird durch z.B. Capsaicin (selektiver Agonist) aktiviert

Indikation und Zulassung

• Indikation von QUTENZA™:
 – Zur Behandlung von

 ✓ peripheren neuropathischen Schmerzen
 ✓ bei Erwachsenen, die nicht an Diabetes mellitus leiden
 ✓ als Monotherapie oder in Kombination mit anderen Arzneimitteln gegen Schmerzen

• Zulassung:
 – QUTENZA™ erhielt am 15 Mai 2009 die Zulassung für die gesamte Europäische Union
ZISOP - Zentrum für interdisziplinäre Schmerztherapie, Onkologie und Palliativmedizin, Center of excellence

QUTENZA™: Capsaicin als Analgetikum – Wie??
Defunktionalisierung der intraepidermalen Nervenfasern (NF)

TRPV1 und andere exzitatorische Ionenkanäle vermehrt

Neuropathie mit Hyperaktivität

Capsaicin (hochdos.)

Osmotische Veränderungen Ca++-abhängige Proteasen

Defunktionalisierung der epiderm. NF

Reversibel defunktionalisierte Faserenden

Hyperaktivität gestoppt

Die Defunktionalisierung der intraepidermalen Nervenfasern erfolgt erst bei langfristiger Anwendung von niedrigdosiertem oder nach kurzer Anwendung von hochdosiertem Capsaicin.

8% Capsaicin: Das klinische Studienprogramm

13 klinische Studien / 2.381 Patienten

- Insgesamt 8 kontrollierte Studien:
 - randomisiert, doppelblind oder mit doppelblinder Therapiephase

- Insgesamt 4 Zulassungsstudien
 - Postzosterische Neuralgie (PZN):
 C116 und C117
 - HIV-assoziierte Neuropathien (HIV-AN):
 C107 (mit 40-wöchiger Anschlussphase) und C119

• Studiendesign:
 – randomisiert, doppel-blind, kontrolliert, multizentrisch \(^1\text{–3}\)

• Beobachtungsdauer:
 – In der Regel: \(12\) Wochen
 – \(1\) Langzeitstudie mit Mehrfachanwendungen:
 weitere \(40\) Wochen in der Anschlussphase (C107)

• Behandlungsgruppen:
 – Verum: \(8\%\) w/w Capsaicin
 – Kontrolle: \(0,04\%\) w/w Capsaicin (= aktive Kontrolle)

• Vorbehandlung:
 – Lidocain-Gel (4\%), Einwirken für 1 h

• Erhebung:
 – Verschiedene Sicherheits- und Wirksamkeitsparameter

Wirksamkeit bei postzosterischer Neuralgie (PZN) - Studie C 116:

Schmerzlinderung insgesamt (NAS-Score)

QUTENZA™ – anhaltende Schmerzlinderung über 12 Wochen

Kontrolle (n=196) QUTENZA™ (n=206)

Veränderung der NAS-Scores (%) gegenüber Baseline, SEM

-19,9% -29,6%

p=0.001

Mittlere wöchentliche Veränderung der NAS-Scores (%) gegenüber Baseline

Zeit (Wochen)

Kontrolle (n=196) QUTENZA™ (n=206)

*p<0.05, **p<0.01; ***p<0.001

Wirksamkeit bei postzosterischer Neuralgie (PZN): Wirkeintritt

Täglicher mittlerer Unterschied der NAS-Score vs. Baseline [%]

QUTENZA™ zeigte einen raschen Wirkeintritt nach 2 Tagen, nach 8 Tagen signifikant besser als die Kontrolle.

Wirksamkeit als Mono- und Kombinationstherapie

QUTENZA™ bewirkte eine signifikante Schmerzlinderung als Monotherapie und in Kombination mit anderen Arzneimitteln gegen Schmerzen.

![Graph showing the average change of NAS-Scores (%) compared to baseline (2nd to 12th week).](image)

- Monotherapie:
 - Kontrolle (n=82): -10,8%
 - QUTENZA™ (n=225): -27,7%

- Kombinationstherapie:
 - Kontrolle (n=82): -10,4%
 - QUTENZA™ (n=225): -22,2%

*p=0,022
*p=0,012

Data on file. [100]. 2009. Astellas Pharma Europe Ltd
Klinische Sicherheit

- Die häufigsten Nebenwirkungen waren

 - lokale Reaktionen an der Applikationsstelle:
 Hauptsächlich (Brenn)Schmerz und Hautrötungen
 - Vorübergehend, selbstlimitierend
 - Im Allgemeinen schwach bis mäßig
 - Handhabbar (z. B. lokale Kühlung, kurz wirksame Opiode)

 - Vorübergehende geringe Veränderungen des Blutdrucks im Zusammenhang mit Veränderungen des Schmerzes

Data on File; EMEA QUTENZA™ public assessment report
Klinische Sicherheit

- Resultate bisher durchgeführter Studien:
 - Auch bei *wiederholter Anwendung*: Inzidenz oder Schwere von Nebenwirkungen blieben konstant auf Niveau der ersten Anwendung
 - Keine direkten systemischen Nebenwirkungen
 - *Keine* Beeinträchtigungen der *neurologischen* Funktion
 - Keinen Einfluss auf kardiovaskuläres System

Data on File; EMEA QUTENZA™ public assessment report
(Analyse über die 8 kontrollierten Studien)

<table>
<thead>
<tr>
<th>Unerwünschtes Ereignis (Patienten %)</th>
<th>QUTENZA™ (n=1,327)</th>
<th>Kontrolle (n=789)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reaktionen an der Anwendungsstelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trockenheit</td>
<td>3,5</td>
<td>0,9</td>
</tr>
<tr>
<td>Erythem*</td>
<td>42,9</td>
<td>41,6</td>
</tr>
<tr>
<td>Schmerz</td>
<td>45,5</td>
<td>22,2</td>
</tr>
<tr>
<td>Papeln</td>
<td>4,9</td>
<td>2,0</td>
</tr>
<tr>
<td>Pruritus</td>
<td>7,8</td>
<td>4,1</td>
</tr>
<tr>
<td>Schwellung</td>
<td>3,3</td>
<td>1,8</td>
</tr>
<tr>
<td>Weitere Ereignisse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythem†</td>
<td>1,6</td>
<td>3,3</td>
</tr>
<tr>
<td>Kopfschmerzen</td>
<td>2,9</td>
<td>3,4</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>3,2</td>
<td>1,9</td>
</tr>
<tr>
<td>Übelkeit</td>
<td>4,3</td>
<td>2,8</td>
</tr>
<tr>
<td>Postzosterische Neuralgie</td>
<td>1,9</td>
<td>3,0</td>
</tr>
<tr>
<td>Infektion der oberen Atemwege</td>
<td>4,1</td>
<td>3,0</td>
</tr>
</tbody>
</table>

*Aufgelistet unter „Allgemeine Erkrankungen und Beschwerden am Verabreichungsort“.
†Aufgelistet unter „Erkrankungen der Haut und des Unterhautzellgewebes“.

Identifizierung und Markierung des Schmerzareals

Keine Hautirritationen!
Herstellen einer Schablone
Lokalanästhesie

die zu behandelnde Fläche 1-2 cm überschreiten
Übertragen der Schablone auf Qutenza-Film
Richtige Seite beachten!
Clinical pain research

Treatment of neuropathic pain with the capsaicin 8% patch: Quantitative sensory testing (QST) in a prospective observational study identifies potential predictors of response to capsaicin 8% patch treatment

Burkhard Gustorff^a,*, Chris Poole^b, Herwig Kloimstein^a, Nicole Hacker^a, Rudolf Likar^c
Patient characteristics

- 57 patients treated
- Neuropathic pain (NP) conditions
 - Post-herpetic neuralgia (PHN; n=22)
 - Post-surgical/post-traumatic NP (n=11)
 - Polyneuropathy (PNP; n=24)
Treatment response after capsaicin

VAS = Visual Analogue Scale

Etiology does not predict response

Reduction in size of pinprick area

- Observed in all patients
- Significantly pronounced in responders

Kreuzschmerz mit neuropathischer Komponente (mixed pain) und Capsaicin?

- Ist Capsaicin 8% bei Kreuzschmerz wirksam?
- Gibt es Prädiktoren für Wirksamkeit?

- Welche Auswirkung hat eine Schmerzreduktion auf die Neuropathie-Komponente?
- Welche Auswirkung hat sie auf die Lebensqualität?
• Wirkt 1 h Capsaicin 8 % 4 Wochen nach der Behandlung?
 – Wie hoch ist die Rate an Respondern?
• Unterscheiden sich Responder von Non-Respondern vor der Behandlung?
• Hat ein Ansprechen Auswirkungen auf
 – Pain Detect
 – Lebensqualität?
• Prospektive bizentrische Vergleichsstudie
• 62 Patienten
• Kreuzschmerzen jeder Genese über mindestens 3 Monate
• Schmerzen >3/10
• Pain Detect Score >13
• Keine Schmerzmittel oder mindestens 1 Woche unveränderte Schmerzmittel
Methodik
Zeitpunkte und Zielgrößen

• Ausgangswerte, 1 Woche und 4 Wochen nach Behandlung
• Def. Responder: > 30% Schmerzreduktion nach 4 Wochen
• Pain Detect
• SF36 (Lebensqualität)
• Quantitative sensorische Testung (QST)
Nach der Behandlung

ZISOP - Zentrum für interdisziplinäre Schmerztherapie, Onkologie und Palliativmedizin, Center of excellence
ZISOP - Zentrum für interdisziplinäre Schmerztherapie, Onkologie und Palliativmedizin, Center of excellence

Hauptergebnis

Anteil Responder Anzahl & prozentual

- > 50% Schmerzreduktion: 19%, n = 10
- 39% Responder: 20%, n = 11
- 30-49% Schmerzreduktion: 61%, n = 33
- Non-Responder: 20%, n = 11
• **Durchschnittsalter**
 – Responder: 59,2 (Median 55,5)
 – Non-Responder: 59,7 (Median 58)

• **Schmerzdauer**
 – Responder: 72,2 Monate (Median 48)
 – Non-Responder: 59,7 (Median 58)

• **Schmerzintensität zu Beginn**
 – Responder: NRS 6,2
 – Non-Responder: NRS 6,3
n = 54, davon 21 Responder; Angabe von Mittelwert und SEM
n = 54, davon 21 Responder; Angabe von Mittelwert
SF-36 Ergebnisse

- **Körpergesamtscore**
 - Responder BL
 - Responder 4 Wochen
 - Non-Responder BL
 - Non-Responder 4w

- **Schmerzscore**
 - trend p=0.08

- **körperliche Funktion**
 - ** (* p<0.05**
 - ** (* p<0.01**

Punkte
• Schwierige Patientengruppe mit neuropathischem Kreuzschmerz über durchschnittlich 5 – 6 Jahre
• Gutes Ansprechen immer noch nach 1 Monat bei rund 40 %
• Rund 20 % erfahren mehr als Halbierung ihrer Schmerzen.
• Prädiktoren wurden nicht gefunden.
• Neuropathie verbessert sich.
Duloxetine und Milnacipran, zwei hochselektive Serotonin-Norepinephrin-Reuptake-Inhibitoren, und der Alpha-2-Delta-Agonist Pregabalin wurden von der FDA für die Behandlung von Fibromyalgie zugelassen.

Die Wirksamkeit von Milnacipran wurde in einer Dosis von 100 mg und 200 mg pro Tag in Studien nachgewiesen.

Die medikamentöse Therapie ist nur eine Schiene der Behandlung. Andere Möglichkeiten sind Übungen, kognitive Verhaltenstherapie, Selbstmanagement-Strategien usw.

Umstellung von Gabapentin auf Pregabalin:

- Gabapentin innerhalb von 1 Woche ausschleichen
 oder
- Absetzen von Gabapentin auch möglich
 oder
- Überlappung mit Pregabalin

Corrigan et al, 2002
<table>
<thead>
<tr>
<th>Drug</th>
<th>Number of Trials and Type</th>
<th>Central Pain</th>
<th>Peripheral Pain</th>
<th>Painful Polyneuropathy</th>
<th>Postherpetic Neuralgia</th>
<th>Peripheral Nerve Injury</th>
<th>Trigeminal Neuralgia</th>
<th>HIV Neuropathy</th>
<th>Mixed neuropath. Pain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tricyclic antidepressants</td>
<td>16 crossover/4 parallel</td>
<td>4.0 (2.6 – 8.5)</td>
<td>2.3 (2.1 – 2.7)</td>
<td>2.1 (1.9 – 2.6)</td>
<td>2.8 (2.2 – 3.8)</td>
<td>2.5 (1.4 – 11)</td>
<td>ND</td>
<td>ns</td>
<td>NA</td>
</tr>
<tr>
<td>Serotonin noradrenaline reuptake inhibitors</td>
<td>2 crossover/3 parallel</td>
<td>ND</td>
<td>5.1 (3.9 – 7.4)</td>
<td>5.1 (3.9 – 7.4)</td>
<td>ND</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Gabapentin/ Pregabalin</td>
<td>4 crossover/13 parallel</td>
<td>NA</td>
<td>4.0 (3.6 – 5.4)</td>
<td>3.9 (3.3 – 4.7)</td>
<td>4.6 (4.3 – 5.4)</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
<td>8.0 (5.9 – 32)</td>
</tr>
<tr>
<td>Opioids</td>
<td>6 crossover/2 parallel</td>
<td>ND</td>
<td>2.7 (2.1 – 3.6)</td>
<td>2.6 (1.7 – 6.0)</td>
<td>2.6 (2.0 – 3.8)</td>
<td>3.0 (1.5 – 74)</td>
<td>ND</td>
<td>ND</td>
<td>2.1 (1.5 – 3.3)</td>
</tr>
<tr>
<td>Tramadol</td>
<td>1 crossover/2 parallel</td>
<td>ND</td>
<td>3.9 (2.7 – 6.7)</td>
<td>3.5 (2.4 – 6.4)</td>
<td>4.8 (2.6 – 27)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>NMDA antagonists</td>
<td>5 crossover/2 parallel</td>
<td>ND</td>
<td>5.5 (3.4 – 14)</td>
<td>2.9 (1.8 – 6.6)</td>
<td>ns</td>
<td>ns</td>
<td>ND</td>
<td>ND</td>
<td>ns</td>
</tr>
<tr>
<td>Topical lidocaine</td>
<td>4 crossover</td>
<td>ND</td>
<td>4.4 (2.5 – 17)</td>
<td>ND</td>
<td>NA</td>
<td>ND</td>
<td>ND</td>
<td>NA</td>
<td>4.4 (2.5 – 17)</td>
</tr>
<tr>
<td>Cannabinoids</td>
<td>2 crossover/2 parallel</td>
<td>6.0 (3.0 – 718)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ns</td>
</tr>
<tr>
<td>Capsaicin</td>
<td>11 parallel</td>
<td>ND</td>
<td>6.7 (4.6 – 12)</td>
<td>11 (5.5 – 317)</td>
<td>3.2 (2.2 – 5.9)</td>
<td>6.5 (3.4 – 69)</td>
<td>ND</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

ND = no studies done; NA = dichotomized data non available; ns = relative risk not significant

<table>
<thead>
<tr>
<th>Study</th>
<th>Medications</th>
</tr>
</thead>
</table>
| Finnerup et al. 2005/2007/2010 | Lidocain Pflaster (PHN or focal neuropathy)
Gabapentin/ Pregabalin
Tramadol
Opioids
TCA/SNRI |
| Attal et al. 2006/2010 | Gabapentin/ Pregabalin
TCA
Lidocain Pflaster (in PHN) |
| Dworkin et al. 2007/2010 | TCA
SSNRI
Lidocain Pflaster (localized NP)
Gabapentin/ Pregabalin
Tramadol
Opioids |

• Durchbruchsschmerz – Tumorschmerz

• neuropathischer Schmerz

• Cannabinoide

• Vitamine
Cannabinoids ≠ Cannabis!

- **Cannabis**
 Plant material or extracts, containing ~63 different cannabinoids, terpenes, flavonoids etc.

- **Cannabinoids**
 (Semi-)synthetical or plant-derived single chemically defined pure compounds.
Cannabinoids

- **Dronabinol** = Delta-9-tetrahydrocannabinol (THC):
 - Oral capsules of synthetic THC (Marinol® in US);
 - plant-derived pure THC (drops or capsules) from pharmacy.

- **Dronabinol + Cannabidiol** (Sativex®): Registered sublingual spray (Canada since 2005, UK, Spain 2010; Germany, Denmark 2011, Austria 2013) IND: MS, Spasticity

- **Nabilone® (UK and Europe) Canemes® (Austria)**:
 - Oral capsules
Indikationen

- Cannabinoide
 - Anregung des Appetits (AIDS Erkrankung, Kachexie)
 - Hemmung von Übelkeit/Erbrechen (Chemotherapie/Palliativmedizin)
 - Reduzierung von Krämpfen oder muskulärer Verspannung (Multiple Sklerose, Querschnitt)
 - Schmerzbehandlung ergänzend zur Opioidbehandlung?
 - Stimmungsaufhellung
Mechanismus der antiemetischen Wirkung nicht eindeutig geklärt

Wirkung über Cannabinoidrezeptoren im Nucleus Tractus Solitarius

Der Nucleus tractus solitarius ist der Area postrema benachbart und erhält Informationen von den chemosensitiven Rezeptoren in der Area postrema, die emetisch wirksame Substanzen im Blut entdecken. Vagale Afferenzen enden ebenfalls im Nucleus tractus solitarius.

Fig. 1 Activation of emetic pathway by cytotoxic drugs and site of action of anti-emetic drugs. Adapted from [10, 26, 58]. 5-HT 5 Hydroxytryptamin, \(D_2\) dopamine, \(SP\) substance \(P\), \(H\) histamine, \(M\) muscarinic, \(CTZ\) chemoreceptor trigger zone, \(VAP\) vagal afferent pathway, 5-HT3RA 5-HT3 receptor antagonist. Emesis pathway solid arrow. Sites of action of drugs dotted arrow.
Wirkmechanismus der appetitsteigernden Wirkung

Sowohl exogene Liganden wie Delta-9-Tetrahydrocannabinol als auch Endocannabinoide erhöhen im Tier die Aufnahme schmackhafter, fettreicher, süßer Nahrung. Diese Wirkung beruht auf einer Aktivierung des CB1-Rezeptors.

Es scheinen daran sowohl zentrale als auch periphere Mechanismen beteiligt zu sein.

Dronabinol

- **Indikation:**
 - Übelkeit
 - therapierefraktäres Erbrechen
 - Appetitlosigkeit

- **Dosierung:**
 - Dronabinol Tropfen 3x2,5 mg morgens, mittags und abends
 - wenn am 3. Behandlungstag keine ausreichende Verbesserung der Symptomatik
 - Steigerung auf 3x5 mg
 - wenn am 6. Tag noch immer keine ausreichende Verbesserung
 - Steigerung auf 3x10 mg

N. Attal et al; Are oral cannabinoids safe and effective in refractory neuropathic pain?; European Journal of Pain (2004) 173 - 177
Schlussfolgerung

Vor allem in der Therapie der therapierefraktären Übelkeit und des Erbrechens, aber auch in der Behandlung vor allem der leichten Appetitlosigkeit können Cannabinoide eine deutliche Symptomlinderung und somit eine Verbesserung der Lebensqualität bewirken. Eine Kombination von Dopaminantagonisten und Cannabinoiden, aber auch von 5-HT₃-Antagonisten und Cannabinoiden scheint besonders effektiv zu sein. Besonders in der Prävention der schweren Nausea lässt sich eine deutliche Symptomlinderung erzielen.

Die Behandlung mit Cannabinoiden sollte generell der Behandlung jeder Patienten vorbehalten bleiben, die mit einer Kombinationstherapie herkömmlicher Antiemetika nicht ausreichend behandelt werden konnten.

Die Dosierung sollte 3 mal täglich erfolgen.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Subject number N =</th>
<th>RCT indication</th>
<th>Trial duration</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ajulemic Acid</td>
<td>21</td>
<td>Neuropathic pain</td>
<td>7 day crossover</td>
<td>VAS improved over placebo (p = 0.02) (Karst et al 2003)</td>
</tr>
<tr>
<td>Cannabis, smoked</td>
<td>50</td>
<td>HIV neuropathy</td>
<td>5 days</td>
<td>Decreased daily pain (p = 0.03) and hyperalgesia (P = 0.05), 52% with >30% pain reduction vs placebo(p=0.04)(Abrams et al 2007)</td>
</tr>
<tr>
<td>Cannabis, smoked</td>
<td>21</td>
<td>Chronic neuropathic pain</td>
<td>5 days</td>
<td>No acute benefit on pain, average daily pain lower on high THC cannabis vs placebo(p=0.02)(Ware et al 2007)</td>
</tr>
<tr>
<td>Sativex</td>
<td>24</td>
<td>Chronic intractable pain</td>
<td>12 weeks, series of N-of-I crossover blocks</td>
<td>VAS pain improved over placebo (p < 0.001) especially in MS (p<0.0042) (Notcutt et al 2004)</td>
</tr>
<tr>
<td>Sativex</td>
<td>125</td>
<td>Peripheral neuropathic pain</td>
<td>5 weeks</td>
<td>Improvements in NRS pain levels (p=0.004), dynamic allodynia (p=0.042), and punctuate allodynia (p=0.021) vs placebo (Nurmiko et al 2007)</td>
</tr>
<tr>
<td>Sativex</td>
<td>117</td>
<td>Pain after spinal injury</td>
<td>10 days</td>
<td>NSD in NRS pain scores, but improved Brief Pain Inventory (p=0.032), and Patients Global Impression of Change (p=0.001) (unpublished)</td>
</tr>
<tr>
<td>Sativex</td>
<td>177</td>
<td>Intractable cancer pain</td>
<td>2 weeks</td>
<td>Improvements in NRS analgesia vs placebo(Johnson and Potts 2005)</td>
</tr>
</tbody>
</table>

Ethan B. Russo, Cannabinoids in the management of difficult to treat pain; Therapeutics and Clinical Risk Management 2008:4(1) 245-259
Meta-analysis of efficacy: intensity of pain by visual analog scale (VAS).
* Parallel design.
SD = standard deviation; r = within-patients coefficient;
SMD = standardized mean differences; CI = confidence interval.

Meta-analysis of events related to mood disturbances.

* Parallel design.

OR = odds ratio; SE = standard error; CI = confidence interval; r = within-patients coefficient; BB = Becker Balagtas method.

Meta-analysis of events affecting motor function.

* Parallel design.

OR = odds ratio; SE = standard error; CI = confidence interval; r = within-patients coefficient; BB = Becker Balagtas method.

* * *

Meta-analysis of events that altered cognitive function.

* Parallel design.

OR = odds ratio; **SE** = standard error; **CI** = confidence interval; **r** = within-patients coefficient; **BB** = Becker Balagtas method.

40 Patienten mit Fibromyalgie wurden mit Nabilone behandelt. Nabilone wurde detriert von 0,5 mg abends bis 1 mg 2 x/Tag über 4 Wochen, dann 4 Wochen wash-out-Periode. Es wurde mit Nabilone signifikante Abnahme des Schmerzscore beobachtet.
Schlussfolgerung

- Nabilone verbessert effektiv den Schlaf von Patienten mit Fibromyalgie und wird gut toleriert.
- Eine niedrige Dosis von Nabilone (0,5 – 1 mg) 1 x tgl. vor dem Schlafengehen verabreicht kommt als Alternative zu Amitryptilin in Betracht (10 – 20 mg).
- Weitere Studien sind notwendig, um den Effekt in der Langzeitanwendung und in der Langzeit-Sicherheit zu beurteilen.

Ware MA, Fitzcharles MA, Joseph L, Shir Y. The Effects of Nabilone on Sleep in Fibromyalgia: Results of a Randomized Controlled Trial. Pain Medicine 2010; 110(2):604-610
Patienten mit Fibromyalgie, die mit der für Fibromyalgie empfohlenen Medikation keinen Erfolg hatten, wurden in die AWB eingeschlossen.

Dronabinol wurde anfänglich in einer Dosierung von 3 x 2,5 mg = 3 x 3 Tropfen verabreicht. Dronabinol wurde wöchentlich gesteigert auf 3 x 5 mg = 3 x 6 Tropfen bzw. auf 3 x 10 mg = 3 x 12 Tropfen.

Die Nebenwirkungen wurden nach Schweregrad dokumentiert (Somnolenz, Müdigkeit, Halluzinationen, Schlaflosigkeit, Ataxie, Kreislaufprobleme, Wortfindungsstörungen, rauschähnlicher Zustand), wobei 1 = leicht, 2 = mittel, 3 = stark.

Der Schmerz wurde täglich morgens und abends dokumentiert.

SF 36, BDI, Fatigue Scale wurden am Tag 1 und Tag 42 ausgefüllt.

Zusatzbehandlungen bzw. zusätzliche Medikation wurden erhoben.
Anwendungsbeobachtung

- Eingeschlossen wurden 22 Patienten, 4 männliche, 18 weibliche.
- 15 Patienten beendeten die Untersuchung am Tag 42.
- 2 Patienten brachen die Untersuchungen aufgrund von Nebenwirkungen ab (Müdigkeit, Schwindel, rauschähnlicher Zustand, Wortfindungsstörung), 1 Patient brach die Untersuchung ab, da keine Veränderung eintrat und 4 Patienten brachen die Untersuchung wegen Problemen die Compliance betreffend ab.
Anwendungsbeobachtung

<table>
<thead>
<tr>
<th></th>
<th>BDI Tag 1</th>
<th>BDI Tag 42</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21,5 ± 3,65</td>
<td>19,30 ± 3,534 (p=0,022)</td>
</tr>
<tr>
<td>Allg. Gesundheitszustand Tag 1</td>
<td>4,38 ± 0,16</td>
<td>3,71 ± 0,26 (p=0,55)</td>
</tr>
<tr>
<td>Fatigue Scale Tag 1</td>
<td>25,5 ± 1,68</td>
<td>22,4 ± 1,97 (p=0,052)</td>
</tr>
</tbody>
</table>
Anwendungsbeobachtung

Zusammenfassung

Dronabinol bewirkt bei Patienten mit Fibromyalgie in der Beobachtungsphase über 42 Tage eine deutliche, klinisch relevante Schmerzreduktion, signifikante Verbesserung der Depression, Fatigue undVerbesserung des Schlafes.

Nebenwirkungen sind leicht.

Dronabinol ist eine Therapieoption bei Fibromyalgiepatienten, bei denen andere Medikamente keine Wirkung gezeigt haben.
Diabetic Polyneuropathy

- at least 50% of diabetic patients will develop neuropathy
- characterised by neurodegeneration of peripheral nerve endings, with acute pain, sensorimotor deficits, and an increased risk of limb amputation
- Results suggest that high glucose concentrations are associated with decreased expression of CB1 receptors in nerve cells.
- There is evidence that dronabinol could increase insulin-induced glucose uptake and improves blood glucose.

Kasuistiken

Patient 01: 59 Jahre, männlich, mit insulinpflichtigem Diabetes mellitus; diabetische Polyneuropathie seit 17 Jahren.

Bei Aufsuchen unserer Ambulanz bezeichnete der Patient seinen allgemeinen Gesundheitszustand (Punkt 1 der SF-36, Bereich 1–5) mit 4 = weniger gut; die Schlafqualität (0 = beste, 10 = schlechteste) mit 7; HADS-D wurde nicht ausgefüllt. Gesamtschmerz (numerische Rating-Skala, 0 = kein Schmerz bis 10 = stärkster vorstellbarer Schmerz) mit 4.

Die Medikation bestand aus Vildagluptin 100 mg, Glimepirid 3 mg, Hydromorphon 16 mg, Esomeprazol 40 mg, Salmeterol, Prothipendyl und Vitamin B12.

Als Therapie erhielt der Patient 3-mal 2,5 mg Dronabinol. Nach 6-wöchiger Behandlung verbesserten sich der Schmerz von 4 auf 1, der Schlaf von 7 auf 1 und die Selbsteinschätzung des allgemeinen Gesundheitszustands auf 3 (gut). Die Behandlung wird derzeit fortgesetzt.
<table>
<thead>
<tr>
<th>Patient</th>
<th>Dronabinol (mg/d)</th>
<th>Schmerz (0–10)</th>
<th>Schlaf (0–10)</th>
<th>SF-36 Gesundheitszustand Allgemein</th>
<th>HADS-D Angst</th>
<th>HADS-D Depression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 01, 59 a, männl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.07.13</td>
<td>3-mal 2,5</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td></td>
<td>nicht ausgefüllt</td>
</tr>
<tr>
<td>01.08.13</td>
<td>3-mal 2,5</td>
<td>1–2</td>
<td>4</td>
<td></td>
<td></td>
<td>nicht ausgefüllt</td>
</tr>
<tr>
<td>22.08.13</td>
<td>3-mal 2,5</td>
<td>1–2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.09.13</td>
<td>3-mal 2,5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.11.13</td>
<td>3-mal 2,5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 02, 54 a, männl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.10.13</td>
<td>3-mal 2,5</td>
<td>9</td>
<td>9</td>
<td>5</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20.10.13</td>
<td>3-mal 2,5</td>
<td>5–6</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.10.13</td>
<td>3-mal 5</td>
<td>7–8</td>
<td>7–8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.10.13</td>
<td>3-mal 7,5</td>
<td>6–7</td>
<td>6–7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.10.13</td>
<td>3-mal 7,5</td>
<td>6–7</td>
<td>6–7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.10.13</td>
<td>3-mal 10</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07.11.13</td>
<td>3-mal 10</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>14.11.13</td>
<td>3-mal 10</td>
<td>7–8</td>
<td>7–8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.11.13</td>
<td>3-mal 10</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27.11.13</td>
<td>3-mal 10</td>
<td>6</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>Derzeit</td>
<td>3-mal 7,5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient 03, 57 a, männl.</td>
<td>17. 10. 13</td>
<td>3-mal 2,5</td>
<td>6</td>
<td>6</td>
<td>kein SF-36 ausgefüllt</td>
<td>9</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>21. 10. 13</td>
<td>3-mal 2,5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24. 10. 13</td>
<td>3-mal 2,5</td>
<td>3-4</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>29. 10. 13</td>
<td>3-mal 2,5</td>
<td>3-4</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31. 10. 13</td>
<td>3-mal 2,5</td>
<td>3-4</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07. 11. 13</td>
<td>3-mal 2,5</td>
<td>4</td>
<td>3-4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15. 11. 13</td>
<td>3-mal 2,5</td>
<td>3-4</td>
<td>3-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21. 11. 13</td>
<td>3-mal 2,5</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27. 11. 13</td>
<td>stopp</td>
<td>4</td>
<td>4</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>Patient 04, 53 a, männl.</td>
<td>17. 10. 13</td>
<td>3-mal 2,5</td>
<td>6 (nachts 3-4)</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>21. 10. 13</td>
<td>5-5-2,5</td>
<td>5-6 (4)</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24. 10. 13</td>
<td>5-5-2,5</td>
<td>2-3 (0)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28. 10. 13</td>
<td>3-mal 5</td>
<td>2-3</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>31. 10. 13</td>
<td>3-mal 5</td>
<td>2-3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>07. 11. 13</td>
<td>3-mal 5</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>14. 11. 13</td>
<td>3-mal 5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21. 11. 13</td>
<td>3-mal 2,5</td>
<td>2</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27. 11. 13</td>
<td>3-mal 2,5</td>
<td>3</td>
<td>2-3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Add-On Treatment of Diabetic Polyneuropathy with Dronabinol

our preliminary data

<table>
<thead>
<tr>
<th>Patient</th>
<th>Dose (mg/d)</th>
<th>Duration (weeks)</th>
<th>Pain ↓ (0-10 Score)</th>
<th>Sleep ↓ Impairment (0-10 Score)</th>
<th>Other Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>7.5</td>
<td>7</td>
<td>-3</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>22.5</td>
<td>6</td>
<td>-3</td>
<td>~ 0</td>
<td>Anxiety ↓</td>
</tr>
<tr>
<td>03</td>
<td>7.5</td>
<td>6</td>
<td>-2</td>
<td>-2</td>
<td>Depression ↓</td>
</tr>
<tr>
<td>04</td>
<td>7.5</td>
<td>6</td>
<td>-3</td>
<td>~ 0</td>
<td>Anxiety ↓</td>
</tr>
</tbody>
</table>

Depression ↓

HbA1c improved

Except patient 03, all wished to continue with dronabinol
Schlussfolgerungen: Insgesamt lassen die Studienergebnisse den Schluss zu, dass die Nabilone-Einnahme zusätzlich zur Standardtherapie von einer Mehrheit an Patienten mit chronischen Schmerzstörungen als eine Maßnahme mit positiver individueller Nutzen-Risiko-Relation gesehen wird und somit eine interessante und attraktive Bereicherung des analgetischen Behandlungskonzepts darstellen kann. (Nabilone 0,25 – 1 mg/Tag)

Lee MC, Ploner M, Wiech K et al Amygdala activity contributes to the dissociative effect of cannabis on pain perception Pain 154 (2013)
Fig. 4. The main effect of capsaicin, indicated in red, was to increase blood-oxygen-level-dependent (BOLD) activation in the anterior cingulate cortex (ACC). (Montreal Neurological Institute (MNI) peak coordinates -8, 20, 30; z score = 3.01) and thalamus (left thalamus: MNI peak coordinates -12, -28, 10; z score = 3.22, right thalamus: MNI peak coordinates 10, -22, 14; z score = 3.6). The effect of interaction between delta 9-tetrahydrocannabinol (THC) and capsaicin, indicated in blue, was significant in the ACC only (MNI peak coordinates -8, 22, 28; z score = 4.6). The graphs clarify the effects of THC and placebo (PLC) on capsaicin-induced BOLD responses. Capsaicin-induced BOLD response was calculated as the difference (cap - con) in percentage BOLD signal change between capsaicin (cap) and control (con) sessions. Compared to PLC, THC decreased the BOLD response in the ACC related to hyperalgesia (top graph). In contrast, activation within thalamus related to hyperalgesia did not differ significantly. Coloured bars denote range of z scores. Clear and black bars represented PLC and THC, respectively. Error bars represent SEM.

Lee MC, Ploner M, Wiech K et al Amygdala activity contributes to the dissociative effect of cannabis on pain perception Pain 154 (2013)
Zusammenfassung

• Die vorhandene Evidenz lässt vermuten, dass die Verwendung von Cannabinoiden moderat wirksam ist in der Behandlung von chronischen(neuropathischen) Schmerzen.

• Die positiven Effekte sind aufgrund von Nebenwirkungen oft beeinträchtigt.

• Mehr Evidenz von größeren, gut designten Studien ist notwendig, um die Balance zwischen Benefit und Nebenwirkungen der Cannabinoida zu klären.

Zusammenfassung

- Cannabinoide sind bei Akutschmerz nicht wirksame Analgetika!

- Cannabinoide zeigen analgetische Wirkung bei MS-assoziierten zentralen Schmerzen und anderen neurologischen Erkrankungen

- Cannabinoide beeinflussen die affektive Schmerzkomponente

- Cannabinoide - Coanalgetika bei chronischen(neuropathischen) Schmerzen!

- Cannabinoide in der Palliativmedizin zur Behandlung von Übelkeit, Erbrechen(CINV) und Appetitlosigkeit
• Durchbruchschmerz – Tumorschmerz

• neuropathischer Schmerz

• Cannabinoide

• Vitamine
Die wichtigsten antioxidativ wirkenden Substanzen

- Vitamin C
- Vitamin D
- Vitamin E
- Vitamin B
All 4 studies were in favor of this intervention with minimal heterogeneity (Tau(2) = 0.00).

Our quantitative synthesis showed a relative risk of 0.22 (95% confidence interval = 0.12, 0.39) when **daily vitamin C of at least 500 mg** was initiated immediately after the extremity surgery or injury and continued for 45 to 50 days.

A routine, daily administration of vitamin C may be beneficial in foot and ankle surgery or injury to avoid CRPS.

Further foot and ankle specific and dose-response studies are warranted.

Shibuya N, Humphers JM, Agarwal MR Efficacy and safety of high-dose vitamin C on complex regional pain syndrome in extremity trauma and surgery--systematic review and meta-analysis J Foot Ankle Surg. 2013 Jan-Feb;52(1):62-6. doi: 10.1053/j.jfas.2012.08.003
Vitamin C has been shown to be effective in preventing CRPS I secondary to wrist fracture, but few data are available with respect to foot and ankle cases.

The present study demonstrates the effectiveness of vitamin C in preventing CRPS I of the foot and ankle—a frequent complication in our control group (9.6%).

The authors recommend preventive management by vitamin C.

In der Fachzeitschrift The Korean Journal of Pain vom April 2013 geht es unter anderem um die Frage, ob Vitamin C zur Behandlung postoperativer Schmerzen in Frage kommt.

Wissenschaftler aus dem Iran haben diesbezüglich verschiedene Erkenntnisse zusammengetragen.

Durch die Gabe von Vitamin C konnte z.B. der Morphinverbrauch nach einer laparoskopischen Entfernung der Gallenblase deutlich vermindert werden.

Nützlich zur Schmerzbekämpfung war Vitamin C auch bei Patienten mit einer Neuralgie nach einer Herpesinfektion.

Mehrfach wurde schon nachgewiesen, dass Vitamin C die Symptomatik eines komplexen regionalen Schmerzsyndroms (Morbus Sudeck) vermindern kann.

In mehreren Studien wurde ein Zusammenhang zwischen einem Vitamin-D-Mangel und Schmerzzuständen festgestellt.

Griechische Wissenschaftler konnten z.B. nachweisen, dass bei Patienten mit rheumatoider Arthritis sehr häufig ein Vitamin-D-Mangel besteht und dieser mit dem Schweregrad der Erkrankung assoziiert ist.

Wissenschaftler aus dem Iran konnten bei 62 erwachsenen Patienten mit Schmerzen des Bewegungsapparates einen Vitamin-D-Mangel nachweisen.

Eine Behandlung mit Vitamin D verbessert die Schmerzsymptomatik bei der Mehrzahl der Patienten.

Bei postmenopausalen Frauen mit chronischen Rückenbeschwerden wurde ebenfalls vermehrt ein Vitamin-D-Mangel festgestellt.

Eine Therapie mit Vitamin D führte bei Veteranen mit multiplen Schmerzstößen zu einer Verbesserung der Schmerzsymptomatik und der Schlafqualität.

Kostoglou-Athanassiou L et al.: Vitamin D and rheumatoid arthritis; Ther Adv Endocrinol Metab. 2012 Dec; 3(6): 181-7
Rkain, Hanan et al.: Relationship between vitamin D deficiency and chronic low back pain in postmenopausal women; Current Rheumatology Reviews; February 2013
Huang, Wei MD, PhD et al.: Improvement of pain, sleep and quality of life in chronic pain patients with vitamin D supplementation; Clinical Journal of Pain: April 2013 –Volume 29, Issue 4, p341-347
Conclusion:

Vitamin D deficiency was highly prevalent in LSS patients (74.3%), and severe pain was associated with higher prevalence of vitamin D deficiency and osteoporosis which could be potential risk factors or a fall and fracture.

As evidenced by the present study, assessment of serum 25-OHD and bone mineral density are recommended in LSS patients with severe pain, and active treatment combining vitamin D, calcium, or bisphosphonate should be considered according to the status of the bone metabolism.

Tae-Hwan K et al Prevalence of Vitamin D Deficiency in Patients with Lumbar Spinal Stenosis and its Relationship with Pain Pain Physician 2013; 16:165-176 • ISSN 1533-3159
Results

Two-thirds of the included patients with LBP had normal Vitamin D levels of >50 nmol/L.

No correlations were seen between Vitamin D deficiency and gender, age, back pain intensity, leg pain intensity, and duration of pain.

Statistically significant, but low, correlation coefficients were found between Vitamin D levels and BMI as well as Modic changes.

Low Vitamin D levels and Modic changes were statistically significantly associated with an odds ratio of 0.30 (95% CI 0.12; 0.75) while weakness, paresthesia and widespread pain were not.

Johansen VJ, Manniche C, Kjaer P. Vitamin D levels appear to be normal in Danish patients attending secondary care for low back pain and a weak positive correlation between serum level Vitamin D and Modic changes was demonstrated: a cross-sectional cohort study of consecutive patients with non-specific low back pain. BMC Musculoskeletal Disorders 2013, 14:78
Prevalence of vitamin D deficiency according to pain category.

Tae-Hwan K et al Prevalence of Vitamin D Deficiency in Patients with Lumbar Spinal Stenosis and its Relationship with Pain Pain Physician 2013; 16:165-176 • ISSN 1533-3159
Tae-Hwan K et al Prevalence of Vitamin D Deficiency in Patients with Lumbar Spinal Stenosis and its Relationship with Pain Pain Physician 2013; 16:165-176 • ISSN 1533-3159
Generelle Osteoporose- und Frakturprophylaxe (siehe Kapitel 6 der Langfassung)

<table>
<thead>
<tr>
<th>1. Muskelkraft, Koordination, Stürze</th>
</tr>
</thead>
<tbody>
<tr>
<td>regelmäßige körperliche Aktivität mit der Zielsetzung, Muskelkraft und Koordination zu fördern (B-D)</td>
</tr>
<tr>
<td>Vermeidung von Immobilisation (C)</td>
</tr>
<tr>
<td>bei Alter > 70 Jahre</td>
</tr>
<tr>
<td>→ jährliche Sturzanamnese (D)</td>
</tr>
<tr>
<td>bei hohem Sturzrisiko</td>
</tr>
<tr>
<td>→ Ursachen- und Risikoabklärung</td>
</tr>
<tr>
<td>→ Therapie vermeidbarer Sturzursachen (A-C)</td>
</tr>
<tr>
<td>Sicherstellung einer ausreichenden Versorgung mit Vitamin D zur Sturzprävention bei älteren Frauen und Männern (ggf. Substitution mit Vitamin D₃ (A), ggf. Therapie mit Alfacalcidol (B))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Ernährung, Lebensstil</th>
</tr>
</thead>
<tbody>
<tr>
<td>ausreichende Kalorienzufuhr (BMI >20 kg/m²)</td>
</tr>
<tr>
<td>Abklärung der Ursache eines Untergewichts (A-D)</td>
</tr>
<tr>
<td>Zufuhr von 1000 mg Kalzium täglich mit der Nahrung (D); Nur wenn geringer: Individuelle Supplementation mit Kalzium. Die Gesamtzufuhr von Kalzium sollte aber nicht mehr als 1500 mg täglich betragen (D)</td>
</tr>
<tr>
<td>mindestens 30 Minuten täglich Sonnenlichtexposition von Armen und Gesicht zur Bildung von Vitamin D₃ (C); Wenn geringer: Supplementierung mit 800-2000 IE Vitamin D₃ oral täglich oder einer äquivalenten Dosis mehrmalswochentlich (B)</td>
</tr>
<tr>
<td>ausreichende Zufuhr von Vitamin B₁₂ und Folsäure mit der Nahrung (B); kein Nikotin (A)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Medikamentenrevision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überprüfung von Notwendigkeit und Dosis von Sturz- bzw. Osteoporosebegünstigenden Medikamenten:</td>
</tr>
<tr>
<td>- Antiepileptika (C)</td>
</tr>
<tr>
<td>- Antidepressiva (C)</td>
</tr>
<tr>
<td>- sedierende Medikamente (B)</td>
</tr>
<tr>
<td>- Orthostase auslösende Medikamente (B)</td>
</tr>
<tr>
<td>- Neuroleptika (D)</td>
</tr>
<tr>
<td>- Glitazone bei Frauen (A)</td>
</tr>
<tr>
<td>- orale Glukokortikoide (A)</td>
</tr>
<tr>
<td>- L-Thyroxin-Therapie: TSH sollte > 0,3 mIU/L sein (B) mit evtl. Ausnahme bei diff. SD-Ca (D)</td>
</tr>
<tr>
<td>- Protonenpumpeninhibitoren bei Langzeiteinnahme (C)</td>
</tr>
</tbody>
</table>

Alle prophylaktischen Maßnahmen wirken rasch. Die Wirkung ist aber nur für die Zeitdauer ihrer Durchführung belegt. Es gibt keinen Beleg für eine persistierende Langzeitwirkung auf Stürze oder Frakturen (B-D).

DVO-Leitlinie 2009 zur Prophylaxe, Diagnostik und Therapie der Osteoporose im Erwachsenenalter, Kitteltaschenversion /Kurzfassung
There were no significant differences in the levels of vitamins A, C, and E and Mg between control subjects and patients with fibromyalgia (p>0.05).

In addition, no statistically significant correlations were found between mean levels of serum vitamins A, C, and E, and Mg and number of TP, scores of VAS, FIQ, and BDI in patients with FM (p>0.05).

According to the results of this study, it was asserted that other complex mechanism may play an important role in the pathophysiology of FM without plasma antioxidant vitamins and Mg levels.

The antinociceptive effects of vitamin E have been reported in earlier studies. For example, dietary supplement vitamin E (12 g/kg per day, p.o. for 3 months) ameliorated nerve conduction deficits in streptozotocin induced diabetic neuropathy in rats.

It was reported that a single injection of vitamin E (0.1-5 g/kg i.p.) attenuated mechanical allodynia in rats with spinal nerve ligation. Kim et al. observed that i.p administration of vitamin E one hour before formalin injection diminished the nociceptive behavior in a dose-dependent manner during the early and late phases of the rat formalin test. However in this study, it is difficult to tell where the major site of analgesic action is for vitamin E.

The pharmacokinetics of vitamin E may be important in understanding its analgesic mechanism.

Young HJ, Vitamin E, an Antioxidant, as a Possible Therapeutic Agent for Treating Pain Korean J Pain 2013 July; Vol. 26, No. 3: 314-315
OBJECTIVE:
To evaluate the effect of vitamin E on the reduction of pelvic pain in women with primary dysmenorrhea and to compare its effect with placebo.

CONCLUSION:
Both vitamin E and placebo may reduce the pelvic pain of dysmenorrhea, but vitamin E seems to cause a more significant reduction in pain. With regard to its safety, the study indicates it can be a simple and safe option for the treatment of dysmenorrhea.

OBJECTIVES:

The objective of this double-blind randomised, placebo-controlled study was to examine the efficacy and safety intramuscular vitamin B12 (Tricortin 1000) in the treatment of low back pain in patients with mechanical or irritative lumbago.

CONCLUSIONS:

The efficacy and safety of parenteral Vitamin B12 in alleviating low back pain and related disability and in decreasing the consumption of paracetamol was confirmed in patients with no signs of nutritional deficiency.

This clinical trial was carried out in order to determine whether these results can also be achieved when a reduced dosage of diclofenac (75 mg daily) is used.

123 patients with acute pain syndromes of the lumbar spine were treated with either B-vitamins and diclofenac or diclofenac alone for a maximum of 7 days. There was the option to terminate therapy in the trial after 3 – 4 days in the case of total pain relief.

45 patients could stop the treatment due to remission of symptoms. 30 patients belonged to the combination therapy group, the other 15 took diclofenac alone; this difference is statistically significant (p < 0.05).

All parameters concerning pain relief and movement of the vertebral column showed statistically significant differences in favour of the B-vitamin diclofenac-combination, too.

The results document the positive influence of B-vitamins on painful vertebral syndromes and indicate that B-vitamins contribute to saving of NSAIDs by shortening the treatment time and reducing daily NSAID-dosage.

Beurteilung des Therapieerfolges am Ende der Behandlung

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th></th>
<th>D</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>sehr gut</td>
<td>30</td>
<td>49</td>
<td>14</td>
<td>23</td>
</tr>
<tr>
<td>gut</td>
<td>21</td>
<td>34</td>
<td>18</td>
<td>29,5</td>
</tr>
<tr>
<td>mäßig</td>
<td>4</td>
<td>7</td>
<td>15</td>
<td>24,5</td>
</tr>
<tr>
<td>schlecht</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>23</td>
</tr>
</tbody>
</table>

N = Vitamin B₁ + B₆ + B₁₂ + Diclofenac; D = Diclofenac

Das Ergebnis der vorliegenden klinischen Prüfung zeigt, dass die analgetische/antiphlogistische Wirkung von Diclofenac durch Vitamine der B-Gruppe verstärkt werden kann.

Eine Einsparung von NSAID wird somit sowohl durch eine kürzere Therapiedauer als auch durch den Einsatz geringerer Diclofenac-Tagesdosierungen ermöglicht.
Results:

Three hundred and seventy-two subjects were allocated at random to either treatment group: Group DB – 187 subjects and Group D – 185 subjects.

After 3 days of treatment, a statistically significant higher proportion of subjects in Group DB (n= 87; 46.5 %) than in Group D (n=55; 29 %) terminated the study due to treatment success (x²: 12,06; p = 0.0005). Furthermore, the combination therapy yielded superior results in pain reduction, improvement of mobility and functionality. Drug safety monitoring profile throughout the trials was within the expected safety profile of diclofenac.

Conclusions:

The combination of diclofenac with B vitamins was superior to diclofenac monotherapy in lumbago relief after 3 days of treatment. As a study drawback, daily VAS measurements were only recorded until subject withdrawal from treatment, whether after 3, 5, or 7 days. There were no differences in safety profile between the two study groups.

Only vitamin B6 improved sensory nerve conduction velocity slowing in diabetic rats when given alone.

To address potential mechanisms of action, we measured markers of oxidative stress (lipid and protein oxidation) and inflammation (cyclooxygenase-2 (COX-2) and TNFσ protein) in the nerve but treatment with the vitamin B cocktail did not significantly affect any of these parameters.

The positive effects of B vitamins on functional and behavioral disorders of diabetic rats suggest a potential for use in treating painful diabetic neuropathy.

What’s already known about this topic?
• B vitamins have been demonstrated to be effective in treating certain peripheral nerve injury-induced chronic pain in experimental animals and in patients.

What does this study add?
• This study shows that systematic administration of vitamin B complex containing thiamine, pyridoxine and cyanocobalamin may alleviate neuropathic hyperalgesia and reduce the spinal neuron injury, particularly, the loss of the inhibitory GABAergic tone in the dorsal horn after temporary spinal cord ischaemia.
Results:

Repetitive systemic administration of vitamin B complex (B1/B6/B12 at 33/33/0.5 mg/kg, i.p., daily, for 7–14 consecutive days) significantly reduced thermal hyperalgesia and the increased expression of VR1 and c-Fos, as well as activation of the astrocytes and microglial cells.

SCII (spinal cord ischaemia-reperfusion injury) caused a dramatic decrease of the expression of the rate-limiting enzyme glutamic acid decarboxylase-65 (GAD65), which synthesizes γ-aminobutyric acid (GABA) in the axonal terminals, and β-III-tubulin, and also caused loss of Nissl bodies in the spinal cord. These alterations were largely prevented and rescued by the B vitamin treatment.

Conclusions:

These findings support the idea that the B vitamins are capable of neuroprotection and antinociception during spinal cord injury due to temporary ischaemia.

Rescuing the loss of inhibitory GABAergic tone may reduce spinal central sensitization and contribute to B vitamin-induced analgesia.

In summary, systematic administration of B vitamins may effectively reduce neuropathic pain-like behaviour and spinal neuron injury after spinal cord ischaemia/reperfusion injury.

Reduction/prevention of the loss of the inhibitory GABAergic tone in the DH of the spinal cord may contribute to the analgesia produced by the B vitamin treatment.

The possibility that B vitamins have a viable place in strategies to prevent injury-induced neuropathic pain warrants further study.

Vitamin B complex treatment significantly affects multiple pain-associated biomarkers, emphasizing the broad, indiscriminate action of these organic compounds.

Identifying the underlying mechanisms for modifying pain sensitivity would be an interesting point for future study.
Zusammenfassung - Vitamine

- Zu wenig Forschung
- Evidenz
- Zuviel und zuwenig ist schlecht
- Ergänzung in der chronischen Schmerztherapie
<table>
<thead>
<tr>
<th></th>
<th>Niereninsuffizienz (Clearance<30ml/min)</th>
<th>Schwere Leberschäden</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSAR</td>
<td>KI</td>
<td>reversibler Transaminasenanstieg</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>Intervallverlängerung auf 8-12 h</td>
<td>KI</td>
</tr>
<tr>
<td>Metamizol</td>
<td>Dosisreduktion</td>
<td>Keine Dosisanpassung</td>
</tr>
<tr>
<td>Carbamazepin</td>
<td>Keine Dosisanpassung</td>
<td>KI</td>
</tr>
<tr>
<td>Gabapentin</td>
<td>150 - 600 mg (aufgeteilt auf 3 Tagesdosen)</td>
<td>Keine Dosisanpassung</td>
</tr>
<tr>
<td>Pregabalin</td>
<td>25 - 150 mg (aufgeteilt auf 2 Tagesdosen)</td>
<td>Keine Dosisanpassung</td>
</tr>
<tr>
<td>Amitryptilin</td>
<td>Dosisanpassung wegen erhöhter Gefahr von Harnverhalten</td>
<td>CAVE erhöhte Krampfneigung</td>
</tr>
<tr>
<td>Duloxetin</td>
<td>KI</td>
<td>KI, CAVE mit Alkohol verstärkte Leberschädigung</td>
</tr>
<tr>
<td>Venlafaxin</td>
<td>50 % Dosisreduktion</td>
<td>50%ige Dosisreduktion</td>
</tr>
<tr>
<td>Tramadol</td>
<td>Verlängerung des Dosisintervalls auf 12h TMD: 200 mg</td>
<td>Verlängerung des Dosisintervalls auf 12h TMD: 150 mg</td>
</tr>
<tr>
<td>Oxycodon</td>
<td>Bis zu 50 % Dosisreduktion</td>
<td>50 % Dosisreduktion</td>
</tr>
<tr>
<td>Hydromorphon</td>
<td>Keine Dosisanpassung</td>
<td>Keine Dosisanpassung</td>
</tr>
<tr>
<td>Fentanyl</td>
<td>25 % Dosisreduktion</td>
<td>Keine Dosisanpassung</td>
</tr>
<tr>
<td>Morphin</td>
<td>25 – 50 % Dosisreduktion</td>
<td>Verlängerung des Dosisintervalls</td>
</tr>
<tr>
<td>Buprenorphin</td>
<td>Keine Dosisanpassung</td>
<td>Eventuell Dosisreduktion</td>
</tr>
</tbody>
</table>
Danke für die Aufmerksamkeit